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Past analyses of the kinetic equations governing thermally stimulated luminescence and con-
ductivity have invariably involved certain approximations; however, the validity of these
approximations has never been explicitly determined. In this paper we give a procedure for
determining the conditions under which the approximations are valid, and show that for a model
involving a single trap depth in the presence of other deep traps, and a single type of recombi-
nation center, the validity depends critically on N, the number of active traps. For N <101
cm-? the conventional approximations are inadequate, and the kinetic equations must be analyzed
exactly through numerical solutions. Although no such solutions have been reported in the
literature, we show that they are not only possible, but are in fact readily obtained for certain
parametric ranges. Examination of these exact solutions for small N reveals new features;
in particular, the dependence of the processes on the density of deep traps, or on initial filling
ratios of the active traps, is markedly different from the dependence at large N, where the
approximations do hold. This invalidates, for these low densities, many approaches to the
analysis of the phenomena which have been recommended on the basis of these approximations.
The procedures developed here have been applied to one specific model. However, they can be
readily generalized to the solutions of the equations for more complex and realistic models of

solids.

I. INTRODUCTION

Thermally stimulated luminescence (TSL) and
thermally stimulated conductivity (TSC) are phe-

nomena frequently investigated, mainly because of
experimental simplicity and deceptive ease of anal-
ysis purportedly yielding useful information on the
trapping parameters of solids. An early explana-



4 EXACT SOLUTIONS OF THE KINETIC...

tion of one process (TSL) was given by Randall and
Wilkins! in terms of a metastable trap from which
the electrons were released at a rate proportional
to the product of the number of electrons in that
trap, #, and the factor e®#7 where E is the acti-
vation energy for the process, % the Boltzmann
constant, and 7T the absolute temperature. This
hypothesis predicted a unique temperature depen-
dence for TSL, which, however, frequently did
not correspond to that observed experimentally.
The original postulates were therefore generalized,
along two more or less independent paths. One
arbitrarily describes both processes phenomeno-
logically through a rate equation of the form

%= _Ponce-E/kT , (1)

where ¢ is the time, and Py and ¢ are constants,
the latter not necessarily integral.? For ¢ >2 this
equation corresponds to no physical model that we
are aware of, and hence this procedure is essen-
tially classificatory in nature, giving no insight
into the physics of the process or correlations with
other observable phenomena. The other approach3=’
is to construct a physical model first, and then de-
rive and analyze the kinetic equations for that mod-
el. One model commonly used is shown in Fig. 1;
it consists essentially of N traps located at a depth
E below the conduction band, which has a density
of states N,. On thermal stimulation the electrons
are released from the traps into the conduction
band with a probability P=Pye #*T  from which
they can either drop into empty recombination cen-
ters with a capture coefficient v, producing TSL,
or be retrapped with a coefficient 8. In the ab-
sence of deep traps the rate equations for the occu-
pation numbers in the traps and the conduction
band, »# and n,, respectively, are given by

Z—’;:—Pn+6nc(N—n) , (2a)
%: —ynyn+n,) . (2b)

For B=0 Eq. (2a) reduces to the Randall and Wil-
kins form, c¢=1 in Eq. (1). For B=y Eq. (1) with
¢ =2 may be derived from Eqs. (2) if N is suitably
large, a condition which, as will be shown in Sec.
II, ensures the validity of the so-called “approxi-
mate solutions” necessary for this derivation; for
single occupation of the traps, however, there is
no further immediate correspondence between the
two approaches.

This second approach has a number of advantages:
1t is clearly related to the physics of the solid, how-
ever naive the model may be, and is thus couched
in terms of parameters which can, at least in prin-
ciple, be calculated theoretically or obtained from
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FIG. 1. Energy-level diagram formingthe model analyzed

in this paper.

other experiments, Further, it predicts TSC if
the electrons in the conduction band have any mo-
bility at all, and correlates it with the TSL through
the parameters of the model. The disadvantage of
the second approach is that, whereas Eq. (1) is
readily soluble, analytically or numerically, for
any P,, E, and heating program, Eqs. (2) are
highly intractable, and so far have never been
solved in any but an approximate way.® The usual
approximation is based on the quite arbitrary as-
sumptions that n, < and dn, /dt <dn /dt; solutions
derived under these assumptions we shall call for
convenience “approximate solutions,” although
strictly speaking they are exact solutions of sim-
plified rate equations. On that basis many anal-
yses of TSL and TSC, and correlations between
them, have been described.3~®

Unfortunately the above assumptions, on which
all the past work has been based, cannot be justi-
fied either physically or mathematically; indeed,
on the contrary, one can show generally from Eqs.
(2) that both must be violated for any set of param-
eters, although the critical violation involving »
and #, may occur at a temperature so high as to be
of no physical interest. The purpose of this work
is therefore to examine in detail the ranges of
parameters for which the approximations, and
therefore past analyses, are physically valid, to
examine the regions where they are not through
exact solutions of the rate equations, and compare
the two, and finally, to reevaluate the usefulness
of TSL and TSC, in view of this work, in providing
information on the trapping parameters of solids.

Broadly speaking, what we shall show is that the
approximate solutions are valid for only a part of
the range of physically plausible trapping param-
eters; that the exact solutions lead to an even
greater variability of shapes, peak positions, and
magnitudes than heretofore predicted, and produce
a different effect on TSL and TSC of other, ther-
mally disconnected traps or of various initial fill-
ing ratios than do the approximate solutions; and
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finally, that any analysis of TSL and TSC in the
absence of extensive other information is highly
unlikely to lead to unambiguous values for the
trapping parameters.

II. SOLUTIONS OF RATE EQUATIONS

A. Approximate Solutions

To treat Eqs. (2) in detail we make a number of
convenient simplifications. In the first place we
convert the time derivatives into temperature de-
rivatives through a constant heating rate g. We
then assume that all the trapping parameters are
independent of temperature, and generalize the
model given above by assuming the presence of M
thermally disconnected deep traps (Fig. 1). The
rate equations then become

n==Pn+pn,N-n),

n+thy==yum+n,+ M),

®)
4)

where the dot indicates the temperature derivative,
and P, B, and ¥ contain implicitly the heating rate
g. TSL is then equal to n(-# -1, and TSC to eun,,
where 7 is the luminous efficiency, u the mobility,
and e the electronic charge. The initial boundary
conditions are #=fN, where f is the initial filling
ratio (£1), and #,=0, and we further assume that
n,n,20, and approach zero at very large tempera-
tures. Under these assumptions one can show
generally that (i) #50, (ii) #, has only one maxi-
mum at finite 7, and (iii) - # - #, has only one max-
imum at finite 7, which, furthermore, occurs at

a lower T than the maximum of n,. Thus, for con-
stant ¢, u, and 17, the TSL peak always preceeds
the TSC peak. One can further show in general
that the TSC curve must decay more slowly than
the TSL curve, and that n, must initially rise as
P/y (which provides a useful method of determining
E). However, the details of the shapes and peak
locations cannot be obtained from general argu-
ments, but must come from actual solutions of

the equations,

In their general form the rate equations are not
integrable, and so far, where numerical solutions
have been obtained, these were for an approximate
and not the exact version of them. The approxi-
mate version is obtained by ignoring #, relative to
n, and #, ton, which leaves Eq. (3) unchanged,
but instead of (4) produces

_ Pn
BN = n)+y(n+M)

The arguments used to justify this procedure
are usually phrased in terms of “quasiequilibrium”
and electronic lifetime in the conduction band,® but
they are not convincing, as they lack universal
validity. For instance, one can easily show from
Eqgs. (3) and (4) that at the start of the heating
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cycle #1,= -7, certainly not a negligible quantity.
Furthermore, at high temperatures above the TSC
peak n,/n2 p/(BN +yM). As P tends to P, which
is of the order of BN,, then for M vanishing, n./n
>1 for any combination of the other parameters.
Equally, as Mis at most of the order of N,, this
is also true for B/y >1 for any M. The so-called
approximate solutions must therefore be inaccu-
rate near the start, and further break down past
some definite higher temperature for large ranges
of the trapping parameters.

It is of course not really necessary to ignore #,,
relative to # to decouple Eqs. (3) and (4); it is suf-
ficient to assume #,<<#, which then leads to an-
other equation for #,:

ne=(B/2y)[(1+4Pyn/B)*2-1] | 4"

where
B=B(N=n)+y(n+M) .

This approach suffers from the same objection
as the previous one — that initially #, is not negli-
gible compared to #; however, this is not a ser-
ious shortcoming, for one can readily show that
at the start n,, the solution obtained from Egs. (3)
and (4), approaches n,(b), the solution obtained
from Eqs. (3) and (4'), as e"™T-T0)  where T, is
the starting temperature. For reasonable values
the exponential vanishes rapidly and leaves no ap-
preciable residual effect on the solution. The
second approximate solution has a somewhat longer
temperature range of validity, for, generally,# /
# is less than n,/n.

The approximate solutions for » and #,, unlike
the exact ones, can be easily obtained numerically,
and have the following very useful property: If
T* be the temperature of the n, peak, and the argu-
ments (a) and (b) refer to the solutions obtained
from Eqs. (3) and (4) or(4’’), respectively, then

n<nd)<nla), n,<n,b)<nyla), T<T* ;

n,(b) <n,<n a), nd)<n<nla), T<T*.

Above T* the approximate solutions form upper
and lower bounds to the exact solutions. Below T*
the exact solutions are extremal to the appropriate
ones; however, in that region the differences be-
tween the exact and (b) solutions can be roughly
expressed as functions of 1-1#,(0)/7(b), and the
magnitude of these differences can be estimated
from the computed values of #2,(6)/%(). It turns
out that if that ratio is less than 1072, then for
practical purposes the exact and approximate solu-
tions correspond in the region 7T'< T*,

The comparison of the approximate solutions,
which (to repeat again) are easily obtained numeri-
cally, provides then a convenient method of deter-
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mining the range of T in which these solutions are
valid approximations: The criterion is simply
agreement between them to a precision required
of the final solutions, and a low ratio of #,(b)/#()
at T<T* Using this approach, we have examined
the approximate solutions over wide ranges of some
of the trapping parameters to determine the regions
wherein these solutions are valid. Unfortunately,
it is not feasible to perform such an investigation
quite generally, for the number of possible permu-
tations of physically meaningful parameters is un-
comfortably large. We have therefore restricted
our investigation to a single trapping energy, E/k
=4000 K, and a single density of states in the con-
duction band, N,= 10'° states/cm3. We have also
assumed that Py=gN,, a condition that can be de-
rived from detailed balance,® and we have then
looked at the ranges 102 <N<510*® cm™, 107158,
<10 cm®/K, and M20 cm™3. The analyses can
be readily extended to include other forms of the
“frequency factor” P, and temperature dependen-
cies of all relevant parameters, if these be known.

Under our conditions the restrictions on the pa-:
rameters for which the approximate solutions are
valid turned out to have a very simple form: N,/
(N+M)SC, where C is a constant depending on the
accuracy required of the final solution: If we are
satisfied with an accuracy of the order of 1% of the
peak value,then C~10*, For N,/(N+M~10, we
have found no significant difference between the
approximate solutions at any temperature; if that
ratio be of the order of 107, the approximate solu-
tions differ significantly from the very start.

o

loq (—iii
ogK() n-ng)
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Thus, for M~0 the approximate solutions are
valid only for a part of the physically plausible
parametric ranges, i.e., for N>10%, For N
<10" the approximate solutions are invalid, and
the thermally stimulated processes can only be
analyzed through the exact solution of Eqs. (3)
and (4). Although some previous investigators*
have reported their inability to generate these so-
lutions, we have actually obtained them by standard
numerical proceduresm; they will be discussed
briefly in Sec. II B.

B. Exact Solutions

The exact solutions were obtained by the Runge-
Kutta-Gill fourth-order process.!® The only diffi-
culty, and the reason why solutions have not been
obtained so far, lies in the choice of the step size
H. To start off on the solution at all, H must be
less than [y(N+M)]™, and for the solution to con-
tinue past the peak without blowing up, H must al-
so be less than (BN)"!, By suitably adjusting the
step size one can obtain solutions for any set of
parameters; however, taking account of computer
time and expense, procurement of exact solutions
becomes impractical for H<10™. This is actually
not a severe restriction, for in general H<10™
corresponds to high values of N, and is precisely
the region wherein the approximate solutions are
valid. The only corner which cannot conveniently
be explored by either the exact or approximate
solutions is for large y (~107%) and low N (~10%);
fortuitously, this region is not very important
for, as will be shown later, the thermally stimula-

FIG. 2. Comparison of solutions
of the exact and “approximate” equa-
tions, for B=vy, M =0, and P0=106K'1
and various N. Solid lines: solutions
of the exact equations (3) and (4); dash-
dot lines: solutions of the “approxi-
mate” equations (3) and (4'); dashed
lines: solutions of the “approximate”
equations (3) and @’’). N=10"2cm-3
for curves A—C, 10! for D-F, and
1018 for G, where all solutions coin-
cide. For n, all approximate solu-
tions of Egs. (3) and (4’) which should
be dash-dot coincide with G. Arrows
on D mark position where n,=7n, and
on E where n,=n.

i | |
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FIG. 3. Valid solutions
of the kinetic equations with
M=0, for various param-
eters. The ratio B/y de-
termines the basic shape.
#/y =10° for A and dots, 1
for B~D, and 10~¢ for E
and circles. P, determines
the peak position for a given
shape: Py=10'K"!for A,
D, and dots, 10® for C, and
10° for B, E, and circles.
N determines the magnitude
of logm(— n "hc): N=1018
cm™ for A, B, and circles,
10 for C and dots, and
10 for Dand E. y~! de-
termines the magnitude of
logiong: y=10"14em?/K for
A, B, and dots, 10~ for
C, and 10°% for D, E, and
circles.

100 200 300 400 500 T,K 100 200

ted processes are here at their weakest, and
probably barely observable.

We have therefore at our disposal methods of
obtaining valid solutions for the kinetic equations
for all physically meaningful ranges of param-
eters, by employing exact solutions for low N,
and the approximate ones for high N. Figure 2
illustrates the relation among the various solutions
as a function of N for one particular set of param-
eters B=y and M=0. In Sec. III we will discuss
briefly the valid solutions, be they exact or approx-
imate, for various sets of parameters, and will
show that the valid solutions show a marked de-
pendence on N in magnitude, peak position, and
shape. This dependency, not discerned in the pre-
vious analyses, further compounds the difficulties
of determining trapping parameters from the ob-
served thermally stimulated processes.

A special case of the rate equations is that for
zero retrapping, 8=0. As this case does not
satisfy the relation Py=gN,, it is not relevant to
our discussion, However, it is interesting, for
it is the original Randall and Wilkins case, and,
when considered under the heretofore employed
approximations, leads to a “first-order” TSL but
an anomalous TSC, which increases monotonically

300 400 500 T,K

with temperature.® The exact solution for this case
is easy to obtain, and differs strikingly from the
approximate one: The TSL is still first order, but
the TSC exhibits a sharp peak with a broad shoul-
der, typical of solutions for small B/y (case E of
Fig. 3). The anomaly in the TSC lies purely inthe
approximation, and is not contained in the original
rate equations.

III. RESULTS OF CALCULATIONS

The results that we show in this section were
calculated for a constant E (E/k=4000 K) and con-
stant N, (10'° states/cm?), as a function of B, v,
N, M, and f, with Py=8N,. Some results to be
shown have already been discussed before®-S;
however, we include them here for the sake of
comparison with the new results, to illustrate the
dependency on N, and also because of the different
manner of presentation that we have adopted. Tra-
ditionally the thermally stimulated processes, and
in particular TSL, have been studied in a “normal-
ized” form. However, we feel that the magnitude
of the process is important, and have illustrated
the results in terms of » and #,. Although one
may not be able to translate these numbers into
actual experimental TSL and TSC curves due to
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ignorance of mobility or of luminous efficiency

for the particular solid in question, nevertheless,
these graphs do provide an indication as to whether
a process is likely to be strong or barely observ-
able.

Figure 3 illustrates the curves for M =0, for a
range of B/y from 1078 to 10% and for N from 10'2
to 10'® and Py=10° to 10'!, The curves show a
great variety of shapes and a remarkable lack of
correspondence between TSL and TSC. The intrin-
sic shape for each process is determined mainly by
the ratio of B/y. The peak position (for constant
E) depends on P,, although not as clearly for TSC
and TSL. The striking difference between the two
processes is shown in the magnitude, which for
TSL is largely determined by N, while for TSC!
it is proportional to y"*,

At first sight the variability and characteristic
features of these curves seem to present the pos-
sibility of a ready determination of the trapping
parameters from TSL-TSC correlations. However,
the effects of introducing a finite /4, shown for
large N in Fig. 4, largely vitiates this notion.
Ridiculously small values of M/N alter drastically
the shape and peak position of both TSL and TSC,
and, for the latter, affect strongly the magnitude

| | | |
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as well, This is particularly true for small values
of B/y, so that the characteristic sharp-peaked
and humped (on a logarithmic plot) TSC will prob-
ably never be seen in practice.

Most of the features shown above can be derived
from analyses of the approximate solutions. In
the following two graphs we show the effect of vary-
ing N for various M/N, keeping P, and By constant;
for the approximate solutions such a variation has
no effect on TSC, and merely scales the magnitude
of the TSL. Figure 5 shows that N not only changes
the shape, peak position, and magnitude of the
processes directly, but that it also modifies the
influence that M/N has on them; small values of
M/N are much more effective in influencing the
thermally stimulated processes for large values
of N than for small ones, indicating that the ab-
solute number of thermally disconnected traps has
a bearing on the results., Figure 6 shows the in-
fluence of N on the behavior resultant from various
initial fillings of the traps,f. Here again both the
variation of peak position and magnitude with f de-
pends strongly on N. Figures 5 and 6 indicate
that conclusions derived from analyses of the ap-
proximate equations cannot be taken over into the
domain of low N; in particular, the procedure

FIG. 4. Effect of the
thermally decoupled deep
traps M on valid solutions
for large N=10'%cm=%, Solid
curves: B/y=10%, py=10!!
K!; curves A—E correspond
to M/N=0, 1072, 1, 10%,
and 10%; E is physically un-
realistic, and included
only to show the trend.
Dashed lines: B/y=107%,
Py=10°K"!; curves a—e
correspond to M/N=0, 1078,
10-%, 102, and 1, respec-
tively; all these cases pro-
duce only a single (—#%—7,)
curve, which is shown by
circles in Fig. 3, and is
here excluded for clarity.

100 200 300 400 500 T,K 100 200

300 400 500 T,K



1966
10— 13—
9 12—

2

T8~ Hi—

=

| o

~o o

g g
T 10—
6[— ot

| | l 8

KELLY, LAUBITZ, AND BRAUNLICH

| >

FIG. 5. Comparison of curves for
small and large N, at p/y=10%, P,
=10"K!. Solid curves: N=102cm3,
Dashed curves: N=10!%, where for
convenience in illustration the mag-
nitude of (-#%—n,) has been decreased
by 107, Numbers near the curves
give pertinent values of M/N.
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recommended by Saunders® for determining the
trapping parameters, by observing the effects of
various f’s, is not nearly as unambiguous as it
first appeared. In view of these findings, we must
conclude that N is a very important trapping param-
eter, influencing all of the observable properties

of the thermally stimulated processes; knowledge
of its magnitude is virtually indispensable to any

of the phenomena.,

IV. DISCUSSION

One frequently finds in the literature statements
to the effect that the study of thermally stimulated
processes is an effective way of determining var-
ious trapping parameters.'?=* Having looked hard
at the problem for some time, we find such senti-
ments difficult to understand, Even on the basis
of such a simple and naive model as the one that
we have here considered, any analysis of the ther-

®
I

log (- =fic)

~
I

300 400 T,K

mally stimulated processes is very complicated.
For instance, we find that the location of the TSL
and TSC peaks is a function of Py, E, M, N, and
f, and that their shape depends mainly on B/v,

M, and N; the magnitude of TSL depends on N,

f, M(weakly), andn, while that of TSC on ¥,

M, N, f, and u. All the observable properties
depend on several parameters, of which M and

N are common to all, As the effects of M them-
selves depend on N, it is virtually impossible to
interpret the experimental results uniquely if one
starts from a position of complete ignorance of
the parameters of the solid. The only exception
to this is the trap depth E, which under certain
conditions® can be obtained from “initial rise”
methods; as far as we know, this is the only
method independent of N, and therefore applicable
a priori without the knowledge of the latter; all
other methods, which are derived from the approx-
imate solutions, such as the “half-width,”*® “two-

FIG. 6. Effect of initial filling for
small and large N, at /y=102, P,
=10"K"!, and M/N =102, Solidcurves:
N=102cm"%, Dashed curves: N=1018,
where for convenience in illustration
the magnitude of (~# —#,) has been
decreased by 107. Numbers near the
curves give values of the initial fill-
ing ratios f. Arrows indicate the
maxima of n,.

5
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heating-rate,”!® or “effective-thermal-emission”*?

methods, will break down for low N. Having ob-
tained E, however, we can proceed no further un-
less we know at least the luminous efficiency and
the mobility; from the former and the magnitude
of TSL we can calculate N, and from the latter we
could calculate the magnitude of n,, which could
then be cross correlated with the shapes and peak
peak positions of both TSL and TSC to yield M,
Py, B, and y. The assumption in the foregoing

is that f has been determined through various
initial irradiation dosages, and, of course, that
each thermally stimulated process consists only
of a single peak which can be determined with
some accuracy over at least two orders of mag-
nitude.

In principle, therefore, given the right condi-
tions and some of the parameters of the solid,
sophisticated experiments and analysis could
yield information of the trapping parameters of
the solid. The usefulness of such an approach,
however, is questionable in view of the simplicity
of our model; it is really too naive to expect that
the low-lying levels are truly “thermally discon-
nected” from the conduction band, or that the trap-
ping parameters are temperature independent,'®
One should further allow for the possibility of hole
traps, as has been done by Schon,!” for example.
Under these more realistic conditions geneval
analyses of the thermally stimulated processes
become practically impossible, and nothing can be
learned from experiments on poorly characterized
solids. The inescapable conclusion is that isolated
measurements of the thermally stimulated pro-
cesses are valueless in determining the trapping
parameters of the solid.

This is not to say that such analyses cannot be
performed, for the difficulties most certainly are
not technical; rate equations can be solved, either

exactly or by means of valid approximations,
through procedures analogous to those that we have
here presented, for virtually any model, with any
set of parameters. For example, we have obtained
exact numerical solutions for models as disparate
as those of Schon,!” where hole traps coexist with
electron traps, and of Briunlich,'® which predicts
‘“negative” TSC. Equally, the rate equations can
be solved, and TSL and TSC calculated, for any
arbitrary temperature dependence of the various
parameters; the artificial simplifications used
heretofore in this field are neither necessary nor
useful, for they lull one into a false sense of sim-
plicity. The real problem of analysis is that un-
less the model applicable to the solid in question

is known beforehand, any particular process can
be analyzed in a large variety of ways, each of
which will yeild different values for the pertinent
parameters. For instance, the broad curves A

of Fig. 3 can be analyzed in terms of our model,
or a model with two closely spaced sets of elec-
tron traps, which produce two overlapping peaks,
or a set of hole traps and a set of electron traps,
or sets of traps at discrete energies, or traps with
continuous energy distributions, and this list can
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A new EPR spectrum, labeled Si-S1, has been observed in electron- or neutron-irradiated,
n- or p-type, crucible-grown silicon under illumination with approximately band-gap light.
The Si-S1 spectrum consists primarily of a fine-structure spectrum and a 235j hyperfine spec-
trum. By incorporating 10 atoms into vacuum-float-zone silicon by ion implantation, the Si-
s1t0 hyperfine spectrum was also observed. An analysis of the coupling tensors in the spin
Hamiltonian which characterize the fine structure and 2°Si hyperfine spectrum is presented
and suggests that the Si-S1 center is the neutral charge state of the one-vacancy—oxygen cen-
ter in an excited spin-triplet state. This model for the Si-S1 center is in agreement with
stress measurements, which are also presented. These measurements indicate that the time-
temperature dependence in the reorientation of the Si-S1 center is the same as that of the
neutral one-vacancy—oxygen center as monitored by the Si-B1 spectrum.

I. INTRODUCTION

Previous studies have shown that the dominant
paramagnetic centers that are formed in electron-
irradiated, crucible-grown silicon at room tem-
perature are the Si-B1 center!™ and the Si-G15
(oxygen-associated) center.’=® The Si-El center
was previously identified!~* as the negative charge
state of the one-vacancy-oxygen center. Recently
it has been shown that these centers also exist in
low -fluence fast-neutron-irradiated crucible-
grown silicon.” In looking at irradiated silicon
samples under illumination with electron para-
magnetic resonance (EPR), we have found a new
spin-1 spectrum, labeled Si-S1, which is prevalent
in n- and p-type, electron- or neutron-irradiated,
crucible-grown silicon. The Si-S1 spectrum is
also observed in some samples of LOPEX and
vacuum-float-zone silicon, but the intensity of the
spectrum is less than that observed in crucible-
grown silicon by at least a factor of 20. In this
paper we report many of the outstanding features
that are observed in the Si-S1 spectrum. A de-
tailed analysis of the Si-Sl1 spectrum is presented
and indicates that the Si-S1 center is the neutral
one-vacancy-oxygen center in an excited spin-
triplet state.

The electronic and molecular structure of the
Si-S1 center is deduced from an unusually rich

EPR spectrum. Section II discusses briefly the
experimental aspects of the EPR measurements.
The analysis of the Si-S1 spectrum in Sec. III
deals with the development of the appropriate spin
Hamiltonian, the constraints on the coupling ten-
sors in this spin Hamiltonian, and the numerical
analysis and values for the coupling tensors as de-
duced from the Si-S1 spectrum. An analysis of the
coupling tensors in terms of the physical inter-
actions which they represent is presented in Sec.
IV and shows how the structure of the Si-S1 center
evolves from this analysis. We have also succeeded
in correlating the Si-S1 center with the Si-B1 cen-
ter through the time-temperature dependence in
the reorientation of these centers.

II. EXPERIMENT

The samples used in the study of the Si-S1 center
were crucible-grown n-type silicon (P-doped,
0.04-10 © cm) and p-type silicon (B-, Al-, or
Ga-doped, 0.7-5 Qcm). These samples were
irradiated at room temperature with 2-MeV elec-
trons with fluences up to 3x10'7 ¢/cm?. The spec-
trum of the Si-S1 center which is seen in n- or
p-type, electron-irradiated, crucible-grown silicon
for H 1 [110] is shown in Fig. 1. The Si-S1 center
is also observed in neutron-irradiated crucible-
grown silicon for fluences $ 104 n/cm2 . The Si-S1
spectrum ‘was also observed in some samples of



